Tetrahedron Letters No. 36, pp 3433 - 3436. @Pergamon Press Ltd. 1979. Printed in Great Britain.

ZWITTERIONIC INTERMEDIATES IN ENAMINE-SINGLET OXYGEN REACTIONS. CONFIGURATION-INTERACTION STUDIES ON THE INDOLE-SINGLET OXYGEN REACTIONS

Kizashi Yamaguchi* and Takayuki Fueno Isao Saito* and Teruo Matsuura Department of Chemistry, Faculty of Engineering Department of Synthetic Chemistry, Science, Osaka University, Toyonaka, Osaka 560 Kyoto University, Kyoto 606, Japan

The theoretical calculations using INDO-RHF CI method have demonstrated that the reaction of singlet oxygen with $1,2,3$ -trimethylindoles proceeds via a zwitterionic peroxide intermediate. The calculations provide important predictions for the mechanism of enamine-singlet oxygen reactions.

There is much current controversy on the intermediacy of short-lived intermediates in the reaction of singlet oxygen with electron-rich alkenes such as enamines or enol ethers. It has been proposed theoretically or experimentally that a two-step 1,2-cycloaddition may occur via perepoxides,¹ zwitterions,² or 1,4-diradicals.³ We previously reported that the singlet-oxygen reaction of enamines is regarded as a symmetry-forbidden nonradical reaction proceeding via a zwitterionic intermediate. 2b The MINDO/3 calculations by Dewar and Thiel have also indicated the zwitterionic mechanism for the enamine-singlet oxygen reactions. $2a$ Harding and Goddard, however, have recently proposed by GVB-CI calculations a mechanism involving a 1,4-diradical intermediate stabilized by an anomeric effect for the hydroperoxidation of methoxy-substituted olefins.³ Recent trapping experiments using methanol have indicated that singlet-oxygen reactions of several electron-rich olefins proceed via polar peroxidic intermediates. $^4\,$ More recently, we have demonstrated that singlet-oxygen reaction of 1,3-dimethyl- or 1,2,3-trimethylindole proceeds via a switterionic intermediate and proposed a mechanism in which 1,4-switterion with its gauche-like conformation is equilibrated with a cisoid conformer. $^5\,$ In order to verify the zwitterionic mechanism we have carried out the theoretical calculations using INDO-RHF CI method⁶ on the reaction of N-methylindoles with singlet oxygen.

We first examined the $[2\frac{1}{s} + 2\frac{1}{s}]$ type reaction of singlet oxygen $({}^1\Delta_{o})$ with 1,2,3-trimethylindole (model I of Fig. 1). The HOMO and LUMO obtained for this approach model are highly

3433

localized on the 0_2^- and C_2^- atoms, respectively. The n-type lone pair (π_{0}) of the terminal 0_{2} atom is the next HOMO. Therefore, three different electronic configurations with lower energies are illustrated as shown. Since electrons should enter into the lone pair MO's (σ_0 and π_0) in pairs in the ground state configurations, <u>i.e</u>., $(\sigma_0)^2 (\pi_0)^2$, the ground state (S_0) may correspond to the zwitterion 1 (cis ZW). On the other hand, monoexcitations of the π_0 - and σ_0 -

lone pair electrons to the LUMO (σ_c) give the σ, π - (2) and σ, σ -diradicals (3), respectively. The configuration mixing (CI) calculations by use of these and other higher excited states configurations⁷ have indicated that the ground state (S_0) , first (S_1) - and second (S_2) -excited states should correspond to <u>cis</u> ZW (1), DR (σ,π) (2) and DR (σ,σ) (3), respectively. Thus the ground state intermediate for the approach model I is regarded as a zwitterion, not a diradical such as 2 or 3 (Fig. 1). Table I summarizes the total energies, net charges and bond indices calculated for the S_0 -, S_1 - and S_2 -states at $R = 1.5$ A and $\theta = 15^\circ$ by the CI method. The net charges on the C₂- and O₂-atoms in the S₀-state are 0.33 and -0.37, respectively, showing a 1,4zwitterionic property, whereas the corresponding values in the $\mathrm{s_{1}^-}$ state are only –0.08 and –0.04 $\,$ in accordance with a 1,4-diradical species.

We next examined the reaction course leading to a three membered ring (perepoxide) (model II of Fig. 1). In this case also the three MO's are more or less localized on the terminal atom (0₂- or C₂ atom) as shown. Similarly, the ground state (S_0) , first (S_1) - and second (S_2) -monoexcited states correspond to zwitterion $\frac{1}{2}$ (gauche ZW), DR (σ,π) $\binom{5}{2}$, and DR (σ,σ) $\binom{6}{2}$, respectively. The net charges on the C₂- and O₂-atoms in the S₀-state by the CI calculations^{6,7} are 0.28 and -0.51, respectively, for the intermediate at $R = 1.5$ A and $\theta = 0^{\circ}$ (Table I). The net charge on $0₁$ -atom is only -0.02. In a perepoxide structure positive charge should be localized

Fig. 1 Calculated energy levels for the 1,2,3-trimethylindole- $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ system

The present calculations are consistent with the experimental results observed in singletoxygen reactions of N-methylindoles. 4a,5 They also provide important predictions for the reaction courses of general enamine-singlet oxygen reactions; (1) since there is a weak covalent bonding between C_2 - and O_2 -atoms, the cis ZW (1) may well be a precursor of the dioxetane; (2) the gauche ZW (4) is capable of undergoing "ene" reaction directly, not by way of a perepoxide, because of the considerable negative charge on the 0_2 -atom and of a weak C_2-0_1 bonding; (3) methanol should attack the C_2 -carbons of both cis - and gauche ZW's from "outside", giving a trapping product with the same stereochemistry, while the trans ZW will give a mixture of diastereomeric trapping products.⁹

Table I. Net Charges and Bond Indices Calculated for the $1,2,3$ -Trimethylindole- 10_2 system

Model		State Total energy (eV)	Net charges				Bond indices				
			$\Delta P_{O_{\alpha}}$	$^{\Delta P}$ 0.	ΔP_{C}	$\Delta P_{C_{\alpha}}$	$W_{O_1O_2}$	$W_{C,0}$	$W_{C_1C_2}$	$W_{C_2O_2}$	$W_{C_2O_1}$
I^a	s_{0}	-3585.380	-0.365	-0.150	0.087 0.333		0.965	0.830	1.036 0.514		
	S,	-3582.111	-0.036	0.013	$0.068 - 0.076$			1.140 0.704	1.113	0.174	
	S_{n}	-3581.298	-0.150	-0.074 0.111 -0.009					1.127 0.531 1.196 0.058		
$\mathbf{H}^{\mathbf{b}}$	S_{0}	-3584.964		$-0.512 -0.024$	0.147	0.280		$0.952 \quad 0.536$	1.170		0.505
	s.	-3580.861	0.179	-0.466 0.007		0.186		0.963 0.239	1.312		0.263
	s,	-3579.256		$0.196 - 0.438 0.065 0.206$				0.918 0.262	1.171		0.309

 a R = 1.5 Å, θ = 15°. b R = 1.5 Å, θ = 0°.

References and Notes

- 1. (a) D. R. Kearns, <u>Chem. Rev., 7</u>1, 395 (1971); (b) S. Inagaki, S. Yamabe, H. Fujimoto, and K. Fukui, <u>Bull. Chem. Soc. Jap.</u>, 45, 3510 (1972); (c) P. D. Bartlett, <u>Chem. Soc. Rev., 5,</u> 149
(1974) (1976).
- 2. (a) M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 97, 3978 (1975); (b) K. Yamaguchi, T. Fueno, and H. Hukutome, <u>Chem. Phys. Lett.,</u> 22 , 466 (1973).
- 3. L. B. Harding and W. A. Goddard, III, <u>J. Am. Chem. Soc.,</u> 29, 4520 (1977); Tetrahedron Lett., 747 (1978).
- 4. (a) I. Saito, M. Imuta, Y. Takahashi, S. Matsugo, and T. Matsuura, J. Am. Chem. Soc., 99, 2005 (1977); (b) C. W. Jefford and C. G. Rimbault, J. Am. Chem. Soc., 100, 6437, 6515 (1978); (c) H. Takeshita and T. Hatsui, <u>J. Org. Chem., 4</u>3, 3080 (1978).
- 5. I. Saito, S. Matsugo, and T. Matsuura, submitted to J. Am. Chem. Soc..
- 6. (a) K. Yamaguchi, K. Ohta, Y. Yabushita, and T. Fueno, Chem. Phys. Lett., 49 , 555 (1977); (b) K. Yamaguchi, <u>ibid.</u>, 33, 230, 330 (1975).
- 7. The single and double-excitations from the RHF-zero-order configuration are considered for the present CI calculations. The lower five unoccupied and higher five occupied MO's are employed to constract these configurations. See, ref. 6a.
- 8. Relative stabilities among the <u>cis</u>- and gauche ZW's in solutions seem to be highly dependent on the polarity and/or hydrogen-bonding ability of solvents.
- 9. The stereochemistry of the trapping products has not been fully understood. However, photooxygenation of indene in methanol gave a mixture of trans- and cis-2-hydroperoxy-l-methoxyindan, $4c$ whereas a single trapping product has been obtained in the case of N-methylindoles^{4a,5} and 2-methoxynorborn-2-ene.^{4b}

(Received in Japan 31 May 1979)