Tetrahedron Letters No. 36, pp 3433 - 3436. ©Pergamon Press Ltd. 1979. Printed in Great Britain.

ZWITTERIONIC INTERMEDIATES IN ENAMINE-SINGLET OXYGEN REACTIONS. CONFIGURATION-INTERACTION STUDIES ON THE INDOLE-SINGLET OXYGEN REACTIONS

Kizashi Yamaguchi * and Takayuki FuenoIsao Saito * and Teruo MatsuuraDepartment of Chemistry, Faculty of EngineeringDepartment of Synthetic Chemistry,Science, Osaka University, Toyonaka, Osaka 560Kyoto University, Kyoto 606, Japan

The theoretical calculations using INDO-RHF CI method have demonstrated that the reaction of singlet oxygen with 1,2,3-trimethylindoles proceeds via a zwitterionic peroxide intermediate. The calculations provide important predictions for the mechanism of enamine-singlet oxygen reactions.

There is much current controversy on the intermediacy of short-lived intermediates in the reaction of singlet oxygen with electron-rich alkenes such as enamines or enol ethers. It has been proposed theoretically or experimentally that a two-step 1,2-cycloaddition may occur via perepoxides,¹ zwitterions,² or 1,4-diradicals.³ We previously reported that the singlet-oxygen reaction of enamines is regarded as a symmetry-forbidden nonradical reaction proceeding via a zwitterionic intermediate.^{2b} The MINDO/3 calculations by Dewar and Thiel have also indicated the zwitterionic mechanism for the enamine-singlet oxygen reactions.^{2a} Harding and Goddard, however, have recently proposed by GVB-CI calculations a mechanism involving a 1,4-diradical intermediate stabilized by an anomeric effect for the hydroperoxidation of methoxy-substituted olefins.³ Recent trapping experiments using methanol have indicated that singlet-oxygen reactions of several electron-rich olefins proceed via polar peroxidic intermediates. 4 More recently, we have demonstrated that singlet-oxygen reaction of 1,3-dimethyl- or 1,2,3-trimethylindole proceeds via a zwitterionic intermediate and proposed a mechanism in which 1,4-zwitterion with its gauche-like conformation is equilibrated with a cisoid conformer. 5 In order to verify the zwitterionic mechanism we have carried out the theoretical calculations using INDO-RHF CI method 6 on the reaction of N-methylindoles with singlet oxygen.

We first examined the $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$ type reaction of singlet oxygen $\begin{pmatrix} 1 \\ \Delta \\ 8 \end{pmatrix}$ with 1,2,3-trimethylindole (model I of Fig. 1). The HOMO and LUMO obtained for this approach model are highly

3433

localized on the 0_2^- and C_2^- atoms, respectively. The π -type lone pair (π_0) of the terminal $0_2^$ atom is the next HOMO. Therefore, three different electronic configurations with lower energies are illustrated as shown. Since electrons should enter into the lone pair MO's (σ_0 and π_0) in pairs in the ground state configurations, <u>i.e.</u>, (σ_0)²(π_0)², the ground state (S_0) may correspond to the zwitterion <u>1</u> (<u>cis</u> ZW). On the other hand, monoexcitations of the π_0^- and σ_0^-

lone pair electrons to the LUMO (σ_c) give the σ, π - (2) and σ, σ -diradicals (3), respectively. The configuration mixing (CI) calculations⁶ by use of these and other higher excited states configurations⁷ have indicated that the ground state (S_0), first (S_1)- and second (S_2)-excited states should correspond to <u>cis</u> ZW (1), DR (σ, π) (2) and DR (σ, σ) (3), respectively. Thus the ground state intermediate for the approach model I is regarded as a zwitterion, not a diradical such as 2 or 3 (Fig. 1). Table I summarizes the total energies, net charges and bond indices calculated for the S_0^- , S_1^- and S_2^- states at R = 1.5 Å and $\theta = 15^\circ$ by the CI method. The net charges on the C_2^- and O_2^- atoms in the S_0^- state are 0.33 and -0.37, respectively, showing a 1,4-zwitterionic property, whereas the corresponding values in the S_1^- state are only -0.08 and -0.04 in accordance with a 1,4-diradical species.

We next examined the reaction course leading to a three membered ring (perepoxide)(model II of Fig. 1). In this case also the three MO's are more or less localized on the terminal atom $(0_2$ - or C_2 atom) as shown. Similarly, the ground state (S_0) , first (S_1) - and second (S_2) -monoexcited states correspond to zwitterion 4 (gauche ZW), DR (σ,π) (5), and DR (σ,σ) (6), respectively. The net charges on the C_2 - and 0_2 -atoms in the S_0 -state by the CI calculations^{6,7} are 0.28 and -0.51, respectively, for the intermediate at R = 1.5 Å and θ = 0° (Table I). The net charge on 0_1 -atom is only -0.02. In a perepoxide structure positive charge should be localized

Fig. 1 Calculated energy levels for the 1,2,3-trimethylindole-¹0₂ system

The present calculations are consistent with the experimental results observed in singletoxygen reactions of N-methylindoles. 4a,5 They also provide important predictions for the reaction courses of general enamine-singlet oxygen reactions; (1) since there is a weak covalent bonding between C_2 - and O_2 -atoms, the cis ZW (1) may well be a precursor of the dioxetane; (2) the gauche ZW (4) is capable of undergoing "ene" reaction directly, not by way of a perepoxide, because of the considerable negative charge on the 0_2 -atom and of a weak C_2-0_1 bonding;⁵ (3) methanol should attack the C2-carbons of both cis- and gauche ZW's from "outside", giving a trapping product with the same stereochemistry, while the trans ZW will give a mixture of diastereomeric trapping products.9

Table I. Net Charges and Bond Indices Calculated for the 1,2,3-Trimethylindole- 10, system

Model	State	Total energy (eV)	Net charges				Bond indices				
			Δp ₀₂	^{ΔΡ} 0 ₁	Δ ^P C ₁	Δ ^P C ₂	W0105	^w c ₁ 0 ₁	^w c1 ^C 2	^w c2 ⁰ 2	^w c2 ⁰ 1
I ^a	s ₀	-3585.380	-0.365	-0.150	0.087	0.333	0.965	0.830	1.036	0.514	
	S ₁	-3582.111	-0.036	0.013	0.068	-0.076	1.140	0.704	1.113	0.174	
	s ₂	-3581.298	-0.150	-0.074	0.111	-0.009	1.127	0.531	1.196	0.058	
II ^b	s _o	-3584.964	-0.512	-0.024	0.147	0.280	0.952	0.536	1.170		0.505
	s,	-3580.861	0.179	-0.466	0.007	0.186	0.963	0.239	1.312		0.263
	s2	-3579.256	0.196	-0.438	0.065	0.206	0.918	0.262	1.171		0.309

 ${}^{a}R = 1.5 \stackrel{\circ}{A}, \theta = 15^{\circ}. \stackrel{b}{R} = 1.5 \stackrel{\circ}{A}, \theta = 0^{\circ}.$

References and Notes

- (a) D. R. Kearns, <u>Chem. Rev.</u>, <u>71</u>, 395 (1971); (b) S. Inagaki, S. Yamabe, H. Fujimoto, and K. Fukui, <u>Bull. Chem. Soc. Jap.</u>, <u>45</u>, 3510 (1972); (c) P. D. Bartlett, <u>Chem. Soc. Rev.</u>, <u>5</u>, 149 1. (1976).
- (a) M. J. S. Dewar and W. Thiel, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 3978 (1975); (b) K. Yamaguchi, T. Fueno, and H. Hukutome, <u>Chem. Phys. Lett.</u>, <u>22</u>, 466 (1973). L. B. Harding and W. A. Goddard, III, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 4520 (1977); Tetrahedron Lett., 2.
- 3. 747 (1978).
- (a) I. Saito, M. Imuta, Y. Takahashi, S. Matsugo, and T. Matsuura, J. Am. Chem. Soc., 99, 4. 2005 (1977); (b) C. W. Jefford and C. G. Rimbault, J. Am. Chem. Soc., 100, 6437, 6515 (1978); (c) H. Takeshita and T. Hatsui, <u>J. Org. Chem.</u>, <u>43</u>, <u>3080</u> (1978).
- I. Saito, S. Matsugo, and T. Matsuura, submitted to J. Am. Chem. Soc.. 5.
- (a) K. Yamaguchi, K. Ohta, Y. Yabushita, and T. Fueno, Chem. Phys. Lett., 49, 555 (1977); 6. (b) K. Yamaguchi, <u>ibid.</u>, <u>33</u>, 230, 330 (1975). The single and double-excitations from the RHF-zero-order configuration are considered for
- 7. the present CI calculations. The lower five unoccupied and higher five occupied MO's are employed to constract these configurations. See, ref. 6a.
- Relative stabilities among the cis- and gauche ZW's in solutions seem to be highly dependent 8. on the polarity and/or hydrogen-bonding ability of solvents.
- The stereochemistry of the trapping products has not been fully understood. However, photo-9. oxygenation of indene in methanol gave a mixture of trans- and cis-2-hydroperoxy-1-methoxyindan,⁴C whereas a single trapping product has been obtained in the case of N-methyl-indoles^{4a,5} and 2-methoxynorborn-2-ene.^{4b}

(Received in Japan 31 May 1979)